In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with respect to time, and the oscillations at different points throughout the wave are in phase. The locations at which the absolute value of the amplitude is minimum are called nodes, and the locations where the absolute value of the amplitude is maximum are called antinodes.
Standing waves were first described scientifically by Michael Faraday in 1831. Faraday observed Faraday wave.Alwyn Scott (ed), Encyclopedia of Nonlinear Science, p. 683, Routledge, 2006 .Theodore Y. Wu, "Stability of nonlinear waves resonantly sustained", Nonlinear Instability of Nonparallel Flows: IUTAM Symposium Potsdam, New York, p. 368, Springer, 2012 . Franz Melde coined the term "standing wave" (German: stehende Welle or Stehwelle) around 1860 and demonstrated the phenomenon in his classic experiment with vibrating strings.Melde, Franz. Ueber einige krumme Flächen, welche von Ebenen, parallel einer bestimmten Ebene, durchschnitten, als Durchschnittsfigur einen Kegelschnitt liefern: Inaugural-Dissertation... Koch, 1859.Melde, Franz. "Ueber die Erregung stehender Wellen eines fadenförmigen Körpers." Annalen der Physik 185, no. 2 (1860): 193–215.Melde, Franz. Die Lehre von den Schwingungscurven...: mit einem Atlas von 11 Tafeln in Steindruck. JA Barth, 1864.Melde, Franz. "Akustische Experimentaluntersuchungen." Annalen der Physik 257, no. 3 (1884): 452–470.
This phenomenon can occur because the medium is moving in the direction opposite to the movement of the wave, or it can arise in a stationary medium as a result of interference between two waves traveling in opposite directions. The most common cause of standing waves is the phenomenon of resonance, in which standing waves occur inside a resonator due to interference between waves reflected back and forth at the resonator's resonant frequency.
For waves of equal amplitude traveling in opposing directions, there is on average no net propagation of energy.
Standing waves and also form on fast flowing Rapids and tidal currents such as the Saltstraumen Whirlpool. A requirement for this in river currents is a flowing water with shallow depth in which the inertia of the water overcomes its gravity due to the supercritical flow speed (Froude number: 1.7 – 4.5, surpassing 4.5 results in direct standing wave) and is therefore neither significantly slowed down by the obstacle nor pushed to the side. Many standing river waves are popular river surfing breaks.
.]] |
As an example of the second type, a standing wave in a transmission line is a wave in which the distribution of current, voltage, or field strength is formed by the superposition of two waves of the same frequency propagating in opposite directions. The effect is a series of nodes (zero displacement) and (maximum displacement) at fixed points along the transmission line. Such a standing wave may be formed when a wave is transmitted into one end of a transmission line and is reflected from the other end by an impedance mismatch, i.e., discontinuity, such as an or a short circuit. The failure of the line to transfer power at the standing wave frequency will usually result in attenuation distortion.
In practice, losses in the transmission line and other components mean that a perfect reflection and a pure standing wave are never achieved. The result is a partial standing wave, which is a superposition of a standing wave and a traveling wave. The degree to which the wave resembles either a pure standing wave or a pure traveling wave is measured by the standing wave ratio (SWR).
Another example is standing waves in the open ocean formed by waves with the same wave period moving in opposite directions. These may form near storm centres, or from reflection of a swell at the shore, and are the source of and .
Standing waves can also occur in two- or three-dimensional . With standing waves on two-dimensional membranes such as , illustrated in the animations above, the nodes become nodal lines, lines on the surface at which there is no movement, that separate regions vibrating with opposite phase. These nodal line patterns are called . In three-dimensional resonators, such as musical instrument and microwave , there are nodal surfaces. This section includes a two-dimensional standing wave example with a rectangular boundary to illustrate how to extend the concept to higher dimensions.
For a harmonic wave traveling to the right along the string, the string's displacement in the y direction as a function of position x and time t is
The displacement in the y-direction for an identical harmonic wave traveling to the left is
where
For identical right- and left-traveling waves on the same string, the total displacement of the string is the sum of yR and yL,
Using the trigonometric sum-to-product identity ,
Equation () does not describe a traveling wave. At any position x, y( x, t) simply oscillates in time with an amplitude that varies in the x-direction as . The animation at the beginning of this article depicts what is happening. As the left-traveling blue wave and right-traveling green wave interfere, they form the standing red wave that does not travel and instead oscillates in place.
Because the string is of infinite length, it has no boundary condition for its displacement at any point along the x-axis. As a result, a standing wave can form at any frequency.
At locations on the x-axis that are even multiples of a quarter wavelength,
the amplitude is always zero. These locations are called nodes. At locations on the x-axis that are odd multiples of a quarter wavelength
the amplitude is maximal, with a value of twice the amplitude of the right- and left-traveling waves that interfere to produce this standing wave pattern. These locations are called . The distance between two consecutive nodes or anti-nodes is half the wavelength, λ/2.
Equation () still describes the standing wave pattern that can form on this string, but now Equation () is subject to boundary conditions where at and because the string is fixed at and because we assume the driving force at the fixed end has small amplitude. Checking the values of y at the two ends,
This boundary condition is in the form of the Sturm–Liouville formulation. The latter boundary condition is satisfied when . L is given, so the boundary condition restricts the wavelength of the standing waves to
Waves can only form standing waves on this string if they have a wavelength that satisfies this relationship with L. If waves travel with speed v along the string, then equivalently the frequency of the standing waves is restricted to
The standing wave with oscillates at the fundamental frequency and has a wavelength that is twice the length of the string. Higher integer values of n correspond to modes of oscillation called or . Any standing wave on the string will have n + 1 nodes including the fixed ends and n anti-nodes.
To compare this example's nodes to the description of nodes for standing waves in the infinite length string, Equation () can be rewritten as
In this variation of the expression for the wavelength, n must be even. Cross multiplying we see that because L is a node, it is an even multiple of a quarter wavelength,
This example demonstrates a type of resonance and the frequencies that produce standing waves can be referred to as resonant frequencies.
In this case, Equation () still describes the standing wave pattern that can form on the string, and the string has the same boundary condition of at . However, at where the string can move freely there should be an anti-node with maximal amplitude of y. Equivalently, this boundary condition of the "free end" can be stated as at , which is in the form of the Sturm–Liouville formulation. The intuition for this boundary condition at is that the motion of the "free end" will follow that of the point to its left.
Reviewing Equation (), for the largest amplitude of y occurs when , or
This leads to a different set of wavelengths than in the two-fixed-ends example. Here, the wavelength of the standing waves is restricted to
Equivalently, the frequency is restricted to
In this example n only takes odd values. Because L is an anti-node, it is an odd multiple of a quarter wavelength. Thus the fundamental mode in this example only has one quarter of a complete sine cycle–zero at and the first peak at –the first harmonic has three quarters of a complete sine cycle, and so on.
This example also demonstrates a type of resonance and the frequencies that produce standing waves are called resonant frequencies.
where
If identical right- and left-traveling waves travel through the pipe, the resulting superposition is described by the sum
This formula for the pressure is of the same form as Equation (), so a stationary pressure wave forms that is fixed in space and oscillates in time.
If the end of a pipe is closed, the pressure is maximal since the closed end of the pipe exerts a force that restricts the movement of air. This corresponds to a pressure anti-node (which is a node for molecular motions, because the molecules near the closed end cannot move). If the end of the pipe is open, the pressure variations are very small, corresponding to a pressure node (which is an anti-node for molecular motions, because the molecules near the open end can move freely). The exact location of the pressure node at an open end is actually slightly beyond the open end of the pipe, so the effective length of the pipe for the purpose of determining resonant frequencies is slightly longer than its physical length. This difference in length is ignored in this example. In terms of reflections, open ends partially reflect waves back into the pipe, allowing some energy to be released into the outside air. Ideally, closed ends reflect the entire wave back in the other direction.
First consider a pipe that is open at both ends, for example an open organ pipe or a recorder. Given that the pressure must be zero at both open ends, the boundary conditions are analogous to the string with two fixed ends,
which only occurs when the wavelength of standing waves is
or equivalently when the frequency is
where v is the speed of sound.
Next, consider a pipe that is open at (and therefore has a pressure node) and closed at (and therefore has a pressure anti-node). The closed "free end" boundary condition for the pressure at can be stated as , which is in the form of the Sturm–Liouville formulation. The intuition for this boundary condition at is that the pressure of the closed end will follow that of the point to its left. Examples of this setup include a bottle and a clarinet. This pipe has boundary conditions analogous to the string with only one fixed end. Its standing waves have wavelengths restricted to
or equivalently the frequency of standing waves is restricted to
For the case where one end is closed, n only takes odd values just like in the case of the string fixed at only one end.
So far, the wave has been written in terms of its pressure as a function of position x and time. Alternatively, the wave can be written in terms of its longitudinal displacement of air, where air in a segment of the pipe moves back and forth slightly in the x-direction as the pressure varies and waves travel in either or both directions. The change in pressure Δ p and longitudinal displacement s are related as
where ρ is the density of the air. In terms of longitudinal displacement, closed ends of pipes correspond to nodes since air movement is restricted and open ends correspond to anti-nodes since the air is free to move. A similar, easier to visualize phenomenon occurs in longitudinal waves propagating along a spring.
We can also consider a pipe that is closed at both ends. In this case, both ends will be pressure anti-nodes or equivalently both ends will be displacement nodes. This example is analogous to the case where both ends are open, except the standing wave pattern has a phase shift along the x-direction to shift the location of the nodes and anti-nodes. For example, the longest wavelength that resonates–the fundamental mode–is again twice the length of the pipe, except that the ends of the pipe have pressure anti-nodes instead of pressure nodes. Between the ends there is one pressure node. In the case of two closed ends, the wavelength is again restricted to
and the frequency is again restricted to
A Rubens tube provides a way to visualize the pressure variations of the standing waves in a tube with two closed ends.
In two dimensions and Cartesian coordinates, the wave equation is
where
To solve this differential equation, let's first solve for its Fourier transform, with
Taking the Fourier transform of the wave equation,
This is an eigenvalue problem where the frequencies correspond to eigenvalues that then correspond to frequency-specific modes or eigenfunctions. Specifically, this is a form of the Helmholtz equation and it can be solved using separation of variables. Assume
Dividing the Helmholtz equation by Z,
This leads to two coupled ordinary differential equations. The x term equals a constant with respect to x that we can define as
Solving for X( x),
This x-dependence is sinusoidal–recalling Euler's formula–with constants A k x and B k x determined by the boundary conditions. Likewise, the y term equals a constant with respect to y that we can define as
and the dispersion relation for this wave is therefore
Solving the differential equation for the y term,
Multiplying these functions together and applying the inverse Fourier transform, z( x, y, t) is a superposition of modes where each mode is the product of sinusoidal functions for x, y, and t,
The constants that determine the exact sinusoidal functions depend on the boundary conditions and initial conditions. To see how the boundary conditions apply, consider an example like the sheet that has been pulled taut where z( x, y, t) must be zero all around the rectangular boundary. For the x dependence, z( x, y, t) must vary in a way that it can be zero at both and for all values of y and t. As in the one dimensional example of the string fixed at both ends, the sinusoidal function that satisfies this boundary condition is
with k x restricted to
Likewise, the y dependence of z( x, y, t) must be zero at both and , which is satisfied by
Restricting the wave numbers to these values also restricts the frequencies that resonate to
If the initial conditions for z( x, y,0) and its time derivative ż( x, y,0) are chosen so the t-dependence is a cosine function, then standing waves for this system take the form
So, standing waves inside this fixed rectangular boundary oscillate in time at certain resonant frequencies parameterized by the integers n and m. As they oscillate in time, they do not travel and their spatial variation is sinusoidal in both the x- and y-directions such that they satisfy the boundary conditions. The fundamental mode, and , has a single antinode in the middle of the rectangle. Varying n and m gives complicated but predictable two-dimensional patterns of nodes and antinodes inside the rectangle.
From the dispersion relation, in certain situations different modes–meaning different combinations of n and m–may resonate at the same frequency even though they have different shapes for their x- and y-dependence. For example, if the boundary is square, , the modes and , and , and and all resonate at
Recalling that ω determines the eigenvalue in the Helmholtz equation above, the number of modes corresponding to each frequency relates to the frequency's multiplicity as an eigenvalue.
A pure standing wave does not transfer energy from the source to the destination.K A Tsokos, Physics for the IB Diploma, p. 251, Cambridge University Press, 2010 . However, the wave is still subject to losses in the medium. Such losses will manifest as a finite SWR, indicating a travelling wave component leaving the source to supply the losses. Even though the SWR is now finite, it may still be the case that no energy reaches the destination because the travelling component is purely supplying the losses. However, in a lossless medium, a finite SWR implies a definite transfer of energy to the destination.
|
|